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Abstract

Large language models (LLMs) are central to
modern natural language processing, delivering
exceptional performance in various tasks.
However, their substantial computational and
memory requirements present challenges,
especially for devices with limited DRAM
capacity. This paper tackles the challenge
of efficiently running LLMs that exceed the
available DRAM capacity by storing the model
parameters in flash memory, but bringing them
on demand to DRAM. Our method involves
constructing an inference cost model that takes
into account the characteristics of flash mem-
ory, guiding us to optimize in two critical areas:
reducing the volume of data transferred from
flash and reading data in larger, more contigu-
ous chunks. Within this hardware-informed
framework, we introduce two principal
techniques. First, “windowing” strategically
reduces data transfer by reusing previously
activated neurons, and second, ‘“‘row-column
bundling”, tailored to the sequential data access
strengths of flash memory, increases the size
of data chunks read from flash memory. These
methods collectively enable running models
up to twice the size of the available DRAM,
with a 4-5x and 20-25x increase in inference
speed compared to naive loading approaches in
CPU and GPU, respectively. Our integration of
sparsity awareness, context-adaptive loading,
and a hardware-oriented design paves the way
for effective inference of LLMs on devices
with limited memory.

1 Introduction

In recent years, large language models (LLMs),

such as GPT-3 (Brown et al., 2020), OPT (Zhang

et al., 2022b), and PaLLM (Chowdhery et al., 2022),

have demonstrated strong performance across a

wide range of natural language tasks. However, the
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Figure 1: Inference latency of 1 token when half the
memory of the model is available. Our method selec-
tively loads parameters on demand per token generation
step. The latency is the time needed to load from flash
multiple times back and forth during the generation of
all tokens and the time needed for the computations,
averaged over all generated tokens.

unprecedented capabilities of these models come
with substantial computational and memory re-
quirements for inference. LLMs can contain hun-
dreds of billions or even trillions of parameters,
which makes them challenging to load and run effi-
ciently, especially on resource-constrained devices.

Currently, the standard approach is to load the en-
tire model into DRAM (Dynamic Random Access
Memory) for inference (Rajbhandari et al., 2021;
Aminabadi et al., 2022). However, this severely
limits the maximum model size that can be run.
For example, a 7 billion parameter model requires
over 14GB of memory just to load the parameters
in half-precision floating point format, exceeding
the capabilities of most edge devices.

To address this limitation, we propose to store
the model parameters in flash memory, which is
at least an order of magnitude larger than DRAM.
Then, during inference, we directly load the re-
quired subset of parameters from the flash mem-
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Figure 2: (a) Flash memory offers significantly higher capacity but suffers from much lower bandwidth compared
to DRAM and CPU/GPU caches and registers. (b) The throughput for random reads in flash memory increases with

the size of sequential chunks and the number of threads.

ory, avoiding the need to fit the entire model in
DRAM. Our method is built on the top of re-
cent works that have shown LLMs exhibit a high
degree of sparsity in the Feed Forward Network
(FEN) layers, with models like OPT (Zhang et al.,
2022b), Falcon (Almazrouei et al., 2023), and Per-
simmon (Elsen et al., 2023), exhibiting more than
90% sparsity (Mirzadeh et al., 2023; Liu et al.,
2023b). We exploit this sparsity to selectively
load only parameters from flash memory that either
have non-zero input or are predicted to have non-
zero output. Specifically, we discuss a hardware-
inspired cost model that includes flash memory,
DRAM, and compute (CPU or GPU). Then, we
introduce two complementary techniques to min-
imize data transfer and maximize flash memory
throughput:

* Windowing: We load and temporarily cache pa-
rameters for only the past few tokens, reusing ag-
gregate sparsity structure predicted over the past
few tokens. This sliding window approach re-
duces the number of 10 requests to load weights.

* Row-column bundling: We store a concate-
nated row and column of the up-projection and
down-projection layers to read bigger contigu-
ous chunks from flash memory. This increases
throughput by reading larger chunks.

To further minimize the number of weights to be
transferred from flash memory to DRAM, we also
employ methods to predict FFN sparsity and avoid
loading zeroed-out parameters, akin to approaches
documented in Deja Vu (Li and Lu, 2023). To-
gether, windowing and sparsity prediction allow
us to load only 2% of the FEN layer from flash
for each inference query. We also propose a static

memory preallocation to minimize transfers within
DRAM and reduce inference latency. Our load
from flash cost model captures the tradeoff between
loading less data and reading bigger chunks. Op-
timizing this cost model and selectively loading
parameters on demand yields flash loading strate-
gies that can run models 2x larger than the device’s
DRAM capacity and speed up inference by 4-5x
and 20-25x compared to naive implementation in
CPU and GPU, respectively. It significantly out-
performs the baseline approach, which reloads the
model’s weights on every forward pass.

2 Flash Memory & LLM Inference

In this section, we explore the characteristics of
memory storage systems (e.g., flash, DRAM), and
their implications for large language model (LLM)
inference. Our aim is to elucidate the challenges
and hardware-specific considerations essential for
algorithm design, particularly in optimizing infer-
ence when working with flash memory.

2.1 Bandwidth and Energy Constraints

While modern NAND flash memories offer high
bandwidth and low latency, they fall well short
of the performance levels of DRAM (Dynamic
Random-Access Memory), in terms of both latency
and throughput. Figure 2a illustrates these differ-
ences. A naive inference implementation that relies
on NAND flash memory might necessitate reload-
ing the entire model for each forward pass. This
process is not only time-consuming, often taking
seconds for even compressed models, but it also
consumes more energy than transferring data from
DRAM to the CPU or GPU’s internal memory.
Load times for the models can be a problem
even in the traditional DRAM-resident set up where



weights are not reloaded partially — the initial, full
load of the model still incurs a penalty, particu-
larly in situations requiring rapid response times
for the first token. Our approach, leveraging activa-
tion sparsity in LL.Ms, addresses these challenges
by enabling selective reading of model weights,
thereby reducing the response latency.

2.2 Read Throughput

Flash memory systems perform optimally with
large sequential reads. For instance, benchmarks
on an Apple MacBook Pro M2 with 2TB flash
demonstrate speeds exceeding 6GiB/s for a 1GiB
linear read of an uncached file. However, this high
bandwidth is not replicated for smaller, random
reads due to the inherent multi-phase nature of
these reads, encompassing the operating system,
drivers, interrupt handling, and the flash controller,
among others. Each phase introduces latency, dis-
proportionately affecting smaller reads.

To circumvent these limitations, we advocate
two primary strategies, which can be employed
jointly. The first involves reading larger chunks of
data. For smaller blocks, a substantial part of the
overall read time is spent waiting for data transfer
to begin. This is often referred to as latency to first
byte. This latency reduces the overall throughput
of each read operation considerably, because the
overall measured throughput has to take into ac-
count not just the speed of transfer once it begins,
but the latency before it begins as well, which pe-
nalizes small reads. This means that if we coalesce
the reads for rows and colums of the FFN matri-
ces, we can pay the latency cost only once for any
given row/column pair in both matrices, and higher
throughput can be realized. This principle is de-
picted in Figure 2b. Perhaps a counterintuitive yet
interesting observation is that in some scenarios, it
will be worthwhile to read more than needed (but in
larger chunks) and then discard, than only reading
strictly the necessary parts but in smaller chunks.
The second strategy leverages parallelized reads,
utilizing the inherent parallelism within storage
stacks and flash controllers. Our results indicate
that throughputs appropriate for sparse LLM infer-
ence are achievable on modern off-the-shelf hard-
ware using 32KiB or larger random reads across
multiple threads.

Motivated by the challenges described in this sec-
tion, in section 3, we propose methods to optimize
data transfer volume and enhance read throughput
to significantly enhance inference speeds.

3 Load From Flash

This section addresses the challenge of conducting
inference on devices where the available DRAM
is substantially smaller than the size of the model.
This necessitates storing the full model weights in
flash memory. Our primary metric for evaluating
various flash loading strategies is latency, dissected
into three distinct components: the I/O cost of load-
ing from flash, the overhead of managing memory
with newly loaded data, and the compute cost for
inference operations.

Our proposed solutions for reducing latency un-
der memory constraints are categorized into three
strategic areas, each targeting a specific aspect of
the latency:

* Reducing Data Load: Aiming to decrease la-
tency associated with flash I/O operations by
loading less data’.

e Optimizing Data Chunk Size: Enhancing flash
throughput by increasing the size of data chunks
loaded, thereby mitigating latency.

» Efficient Management of Loaded Data:
Streamlining the management of data once it is
loaded into memory to minimize overhead.

It is important to note that our focus is not on the
compute aspect of the process, as it is orthogonal to
the core concerns of our work. This delineation al-
lows us to concentrate on optimizing flash memory
interactions and memory management to achieve
efficient inference on memory-constrained devices.

Finally, we will elaborate on the implementation
of these strategies in subsequent sections.

3.1 Reducing Data Transfer

Our methodology leverages the inherent activation
sparsity found in Feed-Forward Network (FFN)
models, as documented in preceding research. The
OPT 6.7B model, for instance, exhibits a notable
97% sparsity within its FFN layer. Similarly, the
Falcon 7B model has been adapted through fine-
tuning, which involves swapping their activation
functions to ReLU, resulting in 95% sparsity while
being almost similar in accuracy (Mirzadeh et al.,
2023). In light of this information, our approach

'Tt is notable that, by data we mean weights of the neural
network. However, our developed techniques can be eas-
ily generalized to other data types transferred and used for
LLM inference, such as activations or KV cache, as suggested
by Sheng et al. (2023).
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Figure 3: (a) Preactivations of tokens in one sequence in OPT 6.7B. The blue graph shows preactivation of elements
that predictor detected positive while the green graph is for up projection. As it can be seen most of the False
Positives are close to 0 and False Negatives constitute a small portion of the elements. (b) A small low rank predictor
finds out which intermediate neurons are going to be activated instead of running heavy up projection.

involves the iterative transfer of only the essential,
non-sparse data from flash memory to DRAM for
processing during inference.

While we employ the 7B models as practical
examples to elucidate our approach, our findings
are adaptable, and they can be extrapolated to both
larger and smaller scale models.

Selective Persistence Strategy. We opt to re-
tain the embeddings and matrices within the at-
tention mechanism of the transformer constantly
in RAM. For the Feed-Forward Network (FFN)
portions, only the non-sparse segments are dynam-
ically loaded into DRAM as needed. Storing at-
tention weights, which constitute approximately
one-third of the model’s size, in memory, allows
for more efficient computation and quicker access,
thereby enhancing inference performance without
the need for full model loading.

Anticipating ReLLU Sparsity. The ReLU acti-
vation function naturally induces over 90% sparsity
in the FFN’s intermediate outputs, which reduces
the memory footprint for subsequent layers that uti-
lize these sparse outputs. However, the preceding
layer, namely the up project for OPT and Falcon,
must be fully present in memory. To avoid loading
the entire up projection matrix, we follow Liu et al.
(2023b), and employ a low-rank predictor to iden-
tify the elements zeroed by ReLLU (see Figure 3b).
In contrast to their work, our predictor needs only
the output of the current layer’s attention module,
and not the previous layer’s FFN module. We have
observed that postponing the prediction to current
layer is sufficient for hardware aware weight load-
ing algorithm design, but leads to more accurate

Table 1: Using predictors doesn’t change the accuracy
of zero-shot metrics significantly as predictor of each
layer accurately identifies sparsity

Zero-Shot Task OPT 6.7B  with Predictor

Arc Easy 66.1 66.2
Arc Challenge 30.6 30.6
HellaSwag 50.3 49.8

outcome due to deferred inputs. We thereby only
load elements indicated by the predictor.

Neuron Data Management via Sliding Win-
dow Technique. In our study, we define an active
neuron as one that yields a positive output in our
low rank predictor model. Our approach focuses
on managing neuron data by employing a Sliding
Window Technique. This technique entails main-
taining a DRAM cache of of only the weight rows
that were predicted to be required by the the re-
cent subset of input tokens. The key aspect of this
technique is the incremental loading of neuron data
that differs between the current input token and its
immediate predecessors. This strategy allows for
efficient memory utilization, as it frees up memory
resources previously allocated to cached weights
required by tokens that are no longer within the
sliding window (as depicted in Figure 4b).

From a mathematical standpoint, let s,g, (k) de-
note the cumulative use of neuron data across a
sequence of k input tokens. Our memory architec-
ture is designed to store an average of s (k) in
DRAM. As we process each new token, the incre-
mental neuron data, which is mathematically repre-
sented as Sygg(k+1) — Sage(k), is loaded from flash
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amount of data needs to be changed.

memory into DRAM. This practice is grounded in
the observed trend of decreasing aggregated neuron
usage over time. Consequently, larger values of &
result in a lesser volume of data being loaded for
each new token. (refer to Figure 4a), while smaller
values of k can help conserve DRAM that is used
to store the cached weights. In determining the
size of the sliding window, the aim is to maximize
it within the constraints imposed by the available
memory capacity.

3.2 Improving Transfer Throughput with
Increased Chunk Sizes

To increase data throughput from flash memory, it
is crucial to read data in larger chunks, preferably
sized as the multiples of the block size of the un-
derlying storage pool. In this section, we detail the
strategy we have employed to augment the chunk
sizes for more efficient flash memory reads.
Bundling Columns and Rows. For OPT and
Falcon models, the usage of the ith column from
the upward projection and the ith row from the
downward projection coincides with the activation
of the ith intermediate neuron. Consequently, by
storing these corresponding columns and rows to-
gether in flash memory, we can consolidate the data
into larger chunks for reading. Refer to Figure 5
for an illustration of this bundling approach. If
each element of weights of the network is stored in
num_bytes such bundling doubles the chunk size
from d,,,ode; X num_bytes t0 2d,,,o4e; X num_bytes as
shown in Figure 5. Our analysis and experiment
show this increases the throughput of the model.
Bundling Based on Co-activation. We had a
conjecture that neurons may be highly correlated
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Figure 5: By bundling columns of up project and rows
of down project in OPT 6.7B we will load 2x chunks
instead of reading columns or rows separately.

in their activity patterns, which may enable further
bundling. To verify this we calculated the activa-
tions of neurons over C4 validation dataset. For
each neuron the coactivation of that neuron with
other ones forms a power law distribution as de-
picted in Figure 6a. Now, let’s call the neuron that
coactivates with a neuron the most closest friend.
Indeed, the closest friend of each neuron coacti-
vates with it very often. As Figure 6b demonstrates,
it is interesting to see each neuron and its closest
friend coactivate with each other at least 95% of
the times. The graphs for the 4th closest friend
and 8th closest friend are also drawn. Based on
this information we decided to put a bundle of each
neuron and its closest friend in the flash memory;
whenever a neuron is predicted to be active we’ll
bring its closes friend too. Unfortunately, this re-
sulted in loading highly active neurons multiple
times and the bundling worked against our original
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intention. It means, the neurons that are very active
are ‘closest friend* of almost everyone. We inten-
tionally present this negative result, as we believe
it may lead to interesting future research studies on
how to effectively bundle the neurons and how to
leverage it for efficient inference.

3.3 Optimized Data Management in DRAM

Although data transfer within DRAM is more ef-
ficient compared to accessing flash memory, it
still incurs a non-negligible cost. When introduc-
ing data for new neurons, reallocating the matrix
and appending new matrices can lead to signifi-
cant overhead due to the need for rewriting exist-
ing neurons data in DRAM. This is particularly
costly when a substantial portion (approximately
25%) of the Feed-Forward Networks (FFNs) in
DRAM needs to be rewritten. To address this
issue, we adopt an alternative memory manage-
ment strategy. This involves the preallocation of
all necessary memory and the establishment of
a corresponding data structure for efficient man-
agement. The data structure comprises elements
such as pointers, matrix, bias, num_used, and
last_k_active shown in Figure 7.

Each row in the matrix represents the concate-
nated row of the 'up project’ and the column of
the ’"down project’ of a neuron. The pointer vec-
tor indicates the original neuron index correspond-
ing to each row in the matrix. The bias for the
“up project’ in the original model is represented in
the corresponding bias element. The num_used
parameter tracks the number of rows currently
utilized in the matrix, initially set to zero. The
matrix for the ith layer is pre-allocated with a size
of Req; X 2dmoedel, Where Req; denotes the maxi-
mum number of neurons required for the specified
window size in a subset of C4 validation set. By

allocating a sufficient amount of memory for each
layer in advance, we minimize the need for fre-
quent reallocation. Finally, the last_k_active
component identifies the neurons from the original
model that were most recently activated using the
last k tokens.

The following operations are done during infer-
ence as depicted in Figure 7.

1. Deleting Neurons: Neurons that are no longer
required are identified efficiently in linear time,
utilizing the last_k_active data and the cur-
rent prediction. The matrix, pointer, and
scalars of these redundant neurons are re-
placed with the most recent elements, and their
count is subtracted from num_rows. For O(c)
neurons to be deleted, a memory rewrite of the
order O(c X dmodel) is required.

2. Bringing in New Neurons: Necessary neuron
data is retrieved from flash memory. The cor-
responding pointers and scalars are read from
DRAM, and these rows are then inserted into
the matrix, extending from num_row to num_row
+ num_new. This approach eliminates the need
for reallocating memory in DRAM and copying
existing data, reducing inference latency.

3. Inference Process: For the infer-
ence operation, the first half of the
matrix[:num_rows, :d_model] is used as the
up project’, and the transposed second half,
matrix[:num_rows,d_model:].transpose(),
serves as the ’"down project’. This configuration
is possible because the order of neurons in the
intermediate output of the feed-forward layer
does not alter the final output, allowing for a
streamlined inference process.
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These steps collectively ensure efficient memory
management during inference, optimizing the neu-
ral network’s performance and resource utilization.

4 Results

Experimental Setup: Our experiment is designed
to optimize inference efficiency on personal de-
vices. To this end, we process sequences individ-
ually, running only one sequence at a time. This
approach allows us to allocate a specific portion of
DRAM for the Key-Value (KV) cache while pri-
marily focusing on the model size. This strategy is
particularly effective when dealing with only one
sequence/query at a time.>

For the implementation of our inference pro-
cess, we utilize the HuggingFace’s transformers
and KV caching. This setup is tested under the
condition where approximately half of the model
size is available in DRAM. We select this amount
as a showcase of the idea of hosting the LLM in
flash. With a different level of sparsity or employ-
ing quantization, one can work with smaller avail-
able DRAM capacity as well. Such a configuration
demonstrates the practicality of executing inference
with lower memory footprints.

Hardware Configuration. Our models are eval-
uated using two distinct hardware setups. The
first setup includes an Apple M1 Max with a 1TB
solid-state drive (SSD) for flash memory. In this
configuration, computations are performed on the
CPU, and the models are maintained in a 32-bit

For OPT 6.7 B model with context length 2048 KV-cache
requires 2048 X 2dmodel €lements which is only 8% of model
size. Also the KV-cache itself can be held in flash memory.

format. The second setup involves a Linux ma-
chine equipped with a 24 GB NVIDIA GeForce
RTX 4090 graphics card. For this machine, com-
putations are GPU-based, and models are run in
the bfloat16 format. For both setups, we operate
under the assumption that almost half of the total
available memory (DRAM plus GPU memory) is
allocated for model computations.

Models. We use OPT 6.7B (Zhang et al., 2022b)
and a sparsified Falcon 7B (Mirzadeh et al., 2023)
model for our evaluations.

Baselines. For methods not employing sparsity
or weight sharing, at least half of the model must be
transferred from flash memory during the forward
pass. This necessity arises because, initially, only
half of the model is available in DRAM, but as the
forward pass progresses, the entire model capacity
is utilized. Consequently, any data not present at
the start must be transferred at least once. Thus, the
most efficient theoretical baseline involves loading
half of the model size from the flash memory into
DRAM. This optimal I/O scenario serves as our
primary baseline. Comparative methods, such as
FlexGen (Sheng et al., 2023) and Petals (Borzunov
et al., 2023), are also constrained by the limited
available DRAM or GPU memory, and therefore
cannot surpass this theoretical 1/O efficiency.

Flash memory Data Loading Implementation.
To optimize data loading from flash memory, our
system employs reads parallelized over 32 threads.
This multithreaded approach is intended to both
better amortize latency to first byte by not wait-
ing for each read sequentially, and maximize read
throughput by reading multiple streams at once
(Figure 2b).



Caching Considerations for Data Loading
from Flash Memory. When data is read from flash
memory, the operating system typically caches
these pages, anticipating future reuse. However,
this caching mechanism consumes additional mem-
ory in DRAM beyond what is allocated for the
model. To accurately assess the real throughput
of flash memory under limited DRAM conditions,
benchmarks should be conducted without relying
on caching. Practical systems may or may not rely
on filesystem cache, depending on requirements.

For the purpose of our hardware benchmarking
in this study, we deliberately and significantly
pessimize our NVMe throughput measurements.
On macOS and i0S, we employ the F_NOCACHE
flag with the fcntl() function, while on Linux,
we use DirectIO. Additionally, on macOS, we
clear any resident buffers before initiating the
benchmark using the purge command. This
approach provides a conservative lower bound
of throughput in scenarios where no caching is
permitted, and makes the benchmarks repeatable.
It’s worth noting that these figures can improve if
either the inference code or the operating system
is allowed to cache some part of the weights.

While OS-level buffer caching is advantageous
for general purpose applications with high cache
hit rates, it lacks fine-grained control over cache
usage per process or buffer eviction at the appli-
cation level. In the context of on-device memory
constraints and large model sizes, this could lead to
a situation where filesystem level does not help, be-
cause in order to evaluate later layers earlier layers
must be evicted in a rolling pattern, so the effective
cache hit rate is close to zero. Aside from being
inefficient, this can cause coexistence issues with
other processes due to memory allocation pressure
and Translation Lookaside Buffer (TLB) churn.

4.1 Results for OPT 6.7B Model

This section presents the outcomes for the OPT
6.7B model, specifically under conditions where
the memory allocated for the model in DRAM is
approximately half of its baseline requirement.
Predictors. For the initial 28 layers of the OPT
6.7B model, we train predictors with a rank of
r = 128. To reduce the occurrence of false nega-
tives, the final four layers employ predictors with a
higher rank of » = 1024. These predictors achieve
an average of 5% false negatives and 7% false posi-
tives in the OPT 6.7B model. As depicted in Figure
3a, our predictor accurately identifies most acti-

vated neurons, while occasionally misidentifying
inactive ones with values near zero. Notably, these
false negatives, being close to zero, do not signifi-
cantly alter the final output when they are excluded.
Furthermore, as demonstrated in Table 1, this level
of prediction accuracy does not adversely affect the
model’s performance in O-shot tasks.

Windowing in the OPT 6.7B Model. Utilizing
a windowing method with £ = 5 in the OPT 6.7B
model significantly reduces the necessity for fresh
data loading. Using active neurons of predictor
would require about 10% of the DRAM memory
capacity in average; however, with our method, it
drops to 2.4%. This process involves reserving
DRAM memory for a window of the past 5 tokens,
which, in turn, increases the DRAM requirement
for the Feed Forward Network (FEN) to 24%.

The overall memory retained in DRAM for the
model comprises several components: Embed-
dings, the Attention Model, the Predictor, and the
Loaded Feed Forward layer. The Predictor ac-
counts for 1.25% of the model size, while Em-
beddings constitute 3%. The Attention Model’s
weights make up 32.3%, and the FFN occupies
15.5% (calculated as 0.24 x 64.62). Summing these
up, the total DRAM memory usage amounts to
52.1% of the model’s size.

Latency Analysis: Using a window size of 5,
each token requires access to 2.4% of the Feed
Forward Network (FFN) neurons. For a 32-bit
model, the data chunk size per read is 2dodel ¥
4 bytes = 32 KiB, as it involves concatenated rows
and columns. On an M1 Max, this results in the
average latency of 125ms per token for loading
from flash and 65ms for memory management (in-
volving neuron deletion and addition). Thus, the
total memory-related latency is less than 190ms
per token (refer to Figure 1). In contrast, the base-
line approach, which requires loading 13.4GB of
data at a speed of 6.1GB/s, leads to a latency of
approximately 2330ms per token. Therefore, our
method represents a substantial improvement over
the baseline.

For a 16-bit model on a GPU machine, the flash
load time is reduced to 40.5ms, and memory man-
agement takes 40ms, slightly higher due to the
additional overhead of transferring data from CPU
to GPU. Nevertheless, the baseline method’s I/O
time remains above 2000 milliseconds.

Detailed comparisons of how each method im-
pacts performance are provided in Table 2.



Table 2: The I/O latency of OPT 6.7B 16 bit on M1 max for different techniques when half the memory is available

Configuration ‘

Performance Metrics

Hybrid | Predictor Windowing Bundling | DRAM (GB) | Flash— DRAM(GB) | Throughput (GB/s) | /O Latency (ms)

X X X X 0
v X X X 6.7
v v X X 4.8
v v v X 6.5
v/ v/ v v/ 6.5

13.4 GB 6.10 GB/s 2130 ms
6.7 GB 6.10 GB/s 1090 ms
0.9 GB 1.25 GB/s 738 ms
0.2 GB 1.25 GB/s 164 ms
0.2 GB 2.25 GB/s 87 ms

4.2 Results for Falcon 7B Model

To verify that our findings generalize beyond OPT
models we also apply the idea of LLM in flash to
Falcon model. Since, the base line Falcon model is
not sparse, we used a sparsified (relufied) version
with almost the same performance as that of the
base version (Mirzadeh et al., 2023). Similar to
previous section, we present the results obtained
under the condition that approximately half of the
model size is available for use in DRAM.

Predictors. In the Falcon 7B model, predictors
of rank r = 256 are used for the initial 28 layers,
and r = 1152 for the last four layers.

Window Configuration. Our model reserves
memory for a window containing the last 4 tokens.
This setup utilizes 33% of the Feed Forward Net-
work (FFN). In terms of memory allocation, em-
beddings take 4.2% of the model size, attention
weights account for 19.4%, and predictors require
4%. The active portion of the FFN, given our win-
dow size, is 25.3% (calculated as 0.33 x 76.8).
Overall, this amounts to 52.93% of the model’s
total size.

Latency Analysis. Using a window size of 4
in our model requires accessing 3.1% of the Feed
Forward Network (FFN) neurons for each token. In
a 32-bit model, this equates to a data chunk size of
35.5 KiB per read (calculated as 2dpodel X 4 bytes).
On an M1 Max device, the time taken to load this
data from flash memory is approximately 161ms,
and the memory management process adds another
90ms, leading to a total latency of 250ms per token.
In comparison, the baseline latency is around 2330
milliseconds, making our method approximately 9
to 10 times faster.

5 Related Works

Efficient Inference for Large Language Models.
As LLMs grow in size, reducing their computa-
tional and memory requirements for inference has
become an active area of research. Approaches

broadly fall into two categories: model compres-
sion techniques like pruning and quantization (Han
et al., 2016b; Sun et al., 2023; Jaiswal et al., 2023;
Xia et al., 2023), (Zhang et al., 2022a; Xu et al.,
2023; Shao et al., 2023; Lin et al., 2023; Hoang
et al., 2023; Zhao et al., 2023; Ahmadian et al.,
2023; Liu et al., 2023a; Li et al., 2023), and se-
lective execution like sparse activations (Liu et al.,
2023b), (Mirzadeh et al., 2023) or conditional com-
putation (Graves, 2016; Baykal et al., 2023). Our
work is complementary, focusing on minimizing
data transfer from flash memory during inference.

Selective Weight Loading. Most related to our
approach is prior work on selective weight loading.
SparseGPU (Narang et al., 2021) exploits activa-
tion sparsity to load a subset of weights for each
layer. However, it still requires loading from RAM.
Flexgen (Sheng et al., 2023) offloads the weights
and kv-cache from GPU memory to DRAM and
DRAM to flash memory, in contrast we consider
only the cases the full model can’t reside in the
whole DRAM and GPU memory on the edge de-
vices. Flexgen is theoretically bound by the slow
throughput of flash to DRAM in such scenarios.
Firefly (Narang et al., 2022) shares our goal of
direct flash access but relies on a hand-designed
schedule for loading. In contrast, we propose a
cost model to optimize weight loading. Similar
techniques have been explored for CNNs (Parashar
et al., 2017), (Rhu et al., 2013). Concurrently,
Adapt (Subramani et al., 2022) has proposed adap-
tive weight loading for vision transformers. We
focus on transformer-based LL.Ms and introduce
techniques like neuron bundling tailored to LLMs.

To hide flash latency, we build on speculative
execution techniques like SpAtten (Dai et al., 2021;
Bae et al., 2023). But, we introduce lightweight
speculation tailored to adaptive weight loading.

Hardware Optimizations. There is a rich body
of work on hardware optimizations for efficient
LLM inference, including efficient memory ar-
chitectures (Agrawal et al., 2022), (Gao et al.,



2022), dataflow optimizations (Han et al., 2016a),
(Shao et al., 2022), hardware evaluation frame-
works Zhang2023AHE, and flash optimizations
(Ham et al., 2016), (Meswani et al., 2015). We fo-
cus on algorithmic improvements, but these could
provide additional speedups.

Speculative Execution. Speculative decoding
(Leviathan et al., 2022; Zhang et al., 2023; He et al.,
2023) is a technique that uses a draft model for
generation and uses the larger model to verify those
tokens. This technique is orthogonal to us and
can be used for further improvement. In case of
speculative decoding, the window in our method
should be updated with multiple tokens rather one.

Mixture of Experts. Mixture of Experts (Yi
et al., 2023) have a sparse structure in their feed
forward layer and can leverage our method for
enabling larger models on device.

In summary, we propose algorithmic techniques
to minimize weight loading from flash memory dur-
ing LLM inference. By combining cost modeling,
sparsity prediction, and hardware awareness, we
demonstrate 4-5x and 20-25x speedup on CPU and
GPU, respectively.

6 Conclusion and Discussion

In this study, we have tackled the significant chal-
lenge of running large language models (LLMs)
on devices with constrained memory capacities.
Our approach, deeply rooted in the understand-
ing of flash memory and DRAM characteristics,
represents a novel convergence of hardware-aware
strategies and machine learning. By developing an
inference cost model that aligns with these hard-
ware constraints, we have introduced two inno-
vative techniques: *windowing’ and "row-column
bundling.” These methods collectively contribute
to a significant reduction in the data load and an
increase in the efficiency of memory usage. Weight
bundling and windowing are two very basic tech-
niques aimed at showcasing the potentials to in-
crease chunk size and read sequentiality while re-
ducing data transfer through sparsity. Numerous
opportunities exist for developing smarter and more
efficient methods to achieve these objectives.

The practical outcomes of our research are note-
worthy. We have demonstrated the ability to run
LLMs up to twice the size of available DRAM,
achieving an acceleration in inference speed by
4-5x compared to traditional loading methods in
CPU, and 20-25x in GPU. This innovation is par-
ticularly crucial for deploying advanced LLMs in
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resource-limited environments, thereby expanding
their applicability and accessibility. The PyTorch
based implementation for forward pass have only
undergone algorithmic (as opposed to systems)
optimization. Significant additional gains are ex-
pected from a custom lower level implementation.

Our work not only provides a solution to a
current computational bottleneck but also sets a
precedent for future research. It underscores the
importance of considering hardware characteristics
in the development of inference-optimized
algorithms, suggesting a promising direction for
further explorations in this domain. We believe
as LL.Ms continue to grow in size and complexity,
approaches like this work will be essential for
harnessing their full potential in a wide range of
devices and applications.

Our study represents an initial endeavor in the
pursuit of democratizing Large Language Model
(LLM) inference, making it accessible to a wider
array of individuals and devices. We recognize that
this early effort has its limitations, which, in turn,
open up compelling avenues for future research. A
critical aspect for future exploration is the analy-
sis of power consumption and thermal limitations
inherent in the methods we propose, particularly
for on-device deployment. Currently, our focus
is on single-batch inference. However, expanding
this to include scenarios like prompt processing,
multi-batch inference, and speculative decoding
presents itself as a valuable area for further investi-
gation. In our initial proof of concept, we operated
under the assumption of memory availability being
half the size of the model. Exploring the dynam-
ics of working with varying memory sizes—both
larger and smaller—introduces a fascinating bal-
ance between latency and accuracy, and is a com-
pelling area for future exploration. In conclusion,
our methodology is constructed on the foundation
of sparsified networks. Nonetheless, the underlying
concept holds potential for broader applications. It
can be adapted to selectively load weights in non-
sparse networks or to dynamically retrieve model
weights from flash storage. This adaptation would
be contingent on the specific requirements of the
input prompt or the contextual parameters provided.
Such an approach suggests a versatile strategy for
managing model weights, optimizing performance
based on the nature of the input, thereby enhancing
the efficiency, usefulness, and applicability of the
proposed scheme in various scenarios dealing with
Large Language Models (LLMs).
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